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The nonlinear breakup of a magnetic layer: 
instability to interchange modes 

By F. CATTANEO A N D  D. W. HUGHES? 
Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, CO 80309, USA 

(Received 3 September 1987) 

Motivated by considerations of the solar toroidal magnetic field we have studied the 
behaviour of a layer of uniform magnetic field embedded in a convectively stable 
atmosphere. Since the field can support extra mass, such a configuration is top-heavy 
and thus instabilities of the Rayleigh-Taylor type can occur. For both static and 
rotating basic states we have followed the evolution of the interchange modes (no 
bending of the field lines) by integrating numerically the nonlinear compressible 
MHD equations. The initial Rayleigh-Taylor instability of the magnetic field gives 
rise to strong shearing motions, thereby exciting secondary Kelvin-Helmholtz 
instabilities which wrap the gas into regions of intense vorticity. The subsequent 
motions are determined primarily by the strong interactions between vortices which 
are responsible for the rapid disruption of the magnetic layer. 

1. Introduction 
The appearance on the solar surface of bipolar magnetic regions, such as sunspots, 

aligned roughly parallel with the equator, is a consequence of the emergence of a 
strong, underlying toroidal magnetic field. Detailed observations over the past three 
hundred years have revealed the cyclic nature of sunspots. With a period of 
approximately eleven years the latitude a t  which the spots appear drifts from about 
40" on either side of the equator to about 5" - a new cycle then restarts a t  high 
latitudes with a change in the polarity of the toroidal field. Of course, sunspots and 
other magnetic regions are just surface manifestations of an underlying complicated 
series of events taking place within the sun involving the regeneration of magnetic 
flux and its subsequent escape to the surface. The work described in this paper deals 
primarily with the latter phenomenon (the escape) but, as described below, was 
motivated also by considerations of the former (the regeneration mechanism). 

It is widely believed that the sun's magnetic field is regenerated by some sort of 
aw dynamo mechanism involving a flow with net helicity, in order to generate a 
poloidal field from a toroidal field (the a-effect), and also differential rotation, o, to 
carry out the reverse process. Solving the full dynamo problem is a task of 
considerable difficulty since it involves obtaining self-consistent solutions to both the 
momentum equation and the magnetic-induction equation. Consequently most 
progress has been made on the so-called kinematic dynamo problem in which the aim 
is to find a flow which, from the induction equation, will amplify the magnetic 
field ~ however, the flow and the resulting magnetic field are not constrained by the 
momentum equation. In particular, in kinematic dynamo models both a and w are 
essentially free parameters and, by a judicious choice of these, a good agreement may 
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be reached with the observed solar field (see, for example, Roberts & Stix 1972; 
Yoshimura 1975). The most obvious site for solar dynamo action is the convection 
zone since therein is differential rotation (probably with both radius and latitude), as 
well as cyclonic convection leading to a net helicity. However, despite the convection 
zone possessing the two necessary ingredients for an aw dynamo, there are two major 
problems associated with the regeneration of magnetic fields within this region. 

The most significant concerns the difficulty of keeping magnetic flux in the 
convection zone for periods comparable with that on which the field is regenerated, 
namely several years. Calculations of isolated flux tubes rising through the convection 
zone, in which the superadiabatic stratification is treated simply as a parameter of 
the problem, predict that  magnetic flux will be carried from the bottom of the 
convection zone to the solar surface in only a few weeks (Parker 1975; Moreno- 
Insertis 1983, 1986). Such models are, however, a tremendous simplification since 
they neglect all interactions between the turbulent gas and the magnetic field. In 
reality the magnetic field is probably closely tied to the convection and, as a 
consequence, some of the field will be brought rapidly to the surface whereas some 
may be pushed to the base of the convection zone by concerted downward motions. 
Nevertheless, the fact remains that even with this more complicated picture 
magnetic flux may be expelled from the interior of the convection zone on a 
convective timescale ( -  1 month). The second major problem of a convection-zone 
dynamo concerns solutions which have recently been obtained to the dynamic (as 
opposed to kinematic) dynamo problem. With the advent of larger and faster 
computers in the past few years it has become possible to obtain self-consistent 
solutions to both the momentum and magnetic-induction equations (Gilman & Miller 
1981 ; Gilman 1983; Glatzmaier 1985u, b) .  I n  the conveetion-zone dynamo models of 
Gilman and Glatzmaier, and in sharp contrast to  kinematic dynamo models, a and 
w are not free parameters but instead are determined by the dynamically consistent 
flow. What is found is that for surface differential rotation profiles that  match the 
sun (i.e. with an equatorward acceleration) the resulting a and w are such as to cause 
a migration of the toroidal field not towards the equator as observed on the sun, but 
instead towards the poles. 

These two difficulties with a standard convection-zone dynamo have led to 
alternative theories and, in particular, i t  has been suggested (e.g. Spiegel & Weiss 
1980; van Ballegooijen 1982) that  the bulk of the toroidal magnetic field may be 
stored below the convection zone proper, in the convective overshoot zone. (Layzer, 
Rosner & Doyle 1979 have also suggested the presence of a magnetic field in the 
overshoot region although their idea of a fossil field leaking out from the radiative 
interior is very different to the dynamo process outlined above.) Such a location is 
favourable in two respects. The first is that  in the models of Glatzmaier (1985a, b ) ,  
which have a stably stratified region below the convection zone, there is a change in 
the sign of the helicity in this stable region which may lead to an equatorward 
propagation of the toroidal field. The second, and more compelling, reason is that  the 
overshoot region is convectively stable and is therefore more suitable for confining 
the magnetic field. It was this aspect of the problem that provided the motivation 
for the work described in this paper; in particular we were interested in the behaviour 
of a magnetic field in a convectively stable region, whether it could escape and, if so, 
what form did this escape take. One of our hopes was that our calculations would 
provide a clue as to  the nature of the magnetic field within the sun and would shed 
some light on the ‘flux tubes versus diffuse fields’ controversy. The magnetic field 
within the sun is typically treated in one of two ways ~ either as individual flux tubes 
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existing in a field-free atmosphere or as a diffuse field existing everywhere. Each of 
these treatments would appear to have its domain of validity - isolated flux tubes 
are indeed seen at  the solar surface whereas deeper in the sun it seems more likely to 
us that any field produced by dynamo action will be of a more diffuse nature. Thus 
one of our aims was to study the formation of isolated flux tubes from the nonlinear 
disruption of a continuous magnetic layer. 

The model we have studied, which is described in detail in $2, has, as its initial 
state, a uniform horizontal magnetic field embedded in a convectively stable 
atmosphere. The temperature and total (gas + magnetic) pressure are everywhere 
continuous, thereby causing a jump in the density a t  the interfaces of the magnetic 
field. In particular, a t  the upper surface of the field, heavier (non-magnetic) gas is 
being supported by lighter (magnetic) gas and thus instabilities of the Ray- 
leigh-Taylor type can ensue. 

Although we believe our work is the first in attacking the fully nonlinear 
development of compressible Rayleigh-Taylor instabilities driven by a magnetic 
field it is related, obviously, to studies of other Rayleigh-Taylor instabilities as well 
as, to a lesser extent, to investigations of magnetic buoyancy instabilities resulting 
from a vertical gradient in a continuously stratified horizontal magnetic field. What 
may be termed the ' classical ' Rayleigh-Taylor instability, resulting from the 
acceleration of a heavy liquid into a lighter one, was conceived by Rayleigh (1883) 
and Taylor (1950) who both considered the linear theory of incompressible flows. The 
nonlinear development of the instability has been studied numerically by Daly (1967, 
1969), Baker, Meiron & Orszag (1980) and Menikoff & Zemach (1983), for 
incompressible flows, and by Wang & Nepveu (1983), who incorporated the effects of 
compressibility. The effects of magnetic fields were included by Kruskal & 
Schwarzschild (1954) who investigated the linear instabilities of a plasma supported 
above a vacuum by a horizontal magnetic field. Although differing from 
Rayleigh-Taylor instabilities in not being driven by a discontinuity in the density 
profile, magnetic buoyancy instabilities arising from a vertical gradient in a 
horizontal field are related in that typically they also result from a release of 
gravitational potential energy made available by the magnetic field. Such 
instabilities have been studied in detail in the linear regime (Newcomb 1961 ; Parker 
1966; Schubert 1968; Gilman 1970; Roberts & Stewartson 1977; Acheson 1978, 
1979; Acheson & Gibbons 1978; Schmitt & Rosner 1983; Hughes 1985a, b ;  Hughes 
& Cattaneo 1987) and have also been investigated for finite-amplitude disturbances 
(Hughes 1987). 

Another seemingly related problem, but one which actually turns out to have quite 
different properties, is that of the stability of an isolated flux tube (Spruit & van 
Ballegooijen 1982). Whereas a flux tube in static equilibrium must necessarily be 
cooler than the adjacent non-magnetic gas, the equilibrium of a magnetic layer 
(which is independent of the horizontal direction) imposes no such restriction on the 
temperature of the magnetic region. This important difference in the initial states of 
these two models leads to their having qualitatively different stability features - we 
shall elaborate on this in 53.1. 

When studying any complex physical process it is always beneficial to start off 
with a relatively simple problem. For this reason, and also to facilitate the 
computation, we decided initially to consider two-dimensional disturbances. It is 
however important to give some thoughts as to what are the key modes in three 
dimensions. Our preliminary linear calculations suggest that the most rapidly 
growing three-dimensional mode has a long wavelength in the direction of the 
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imposed field and that, in the limit of this wavelength becoming infinite (and in the 
absence of rapid rotation), the resulting mode is a pure interchange with straight field 
lines and motion confined to the plane perpendicular to the magnetic field. Such 
behaviour is in keeping with other interfacial instabilities (see, for example, Kruskal 
& Schwarzschild 1954) but is rather different to that of the magnetic buoyancy 
instabilities of a smoothly varying field in which long-wavelength instabilities can 
tend to a purely horizontal flow in the limit - these latter modes do not appear to be 
of importance in interfacial instabilities. I n  two dimensions we found that undulatory 
modes, with motion along the field and in the vertical direction, were always stable 
due to the inhibiting amount of compressive work involved. Indeed, as discussed 
in detail by Hughes & Cattaneo (1987), this stabilizing feature is present even 
for magnetic buoyancy instabilities when undulatory modes can be important. 
Consequently in this paper we shall deal only with the interchange modes. In  the 
light of the above comments on the dominant modes in three dimensions such a 
study is obviously of great relevance. The nonlinear evolution of the static initial 
state is considered in $3, the effects of uniform rotation are incorporated in $4. 

Since we are interested not just in the early stages of the instability, but also in the 
long-term morphology of the magnetic field, we have integrated the governing 
equations for many timesteps, until virtually all of the energy has been dissipated. 
By so doing we have discovered the interesting feature that there are two distinct 
stages to the magnetic Rayleigh-Taylor instability. I n  the first, a magnetic field 
embedded in a convectively stable atmosphere becomes unstable to interchange 
modes and, as illustrated by the colour figures of $53 and 4, the rising field forms the 
mushroom-shaped structures characteristic of Rayleigh-Taylor instabilities induced 
by only a small jump in the density (see, for instance, Daly 1967). Associated with 
the wings of the mushrooms are regions of intense vorticity and, in the second stage, 
when most of the available potential energy has been released, i t  is the vorticity 
distribution that plays a key role in the subsequent evolution of the layer. Indeed, 
somewhat surprisingly, certain interactions between vortex pairs are strong enough 
to prevent the escape of small pockets of high magnetic-field strength even though 
such regions are lighter than their surroundings. 

2. Mathematical formulation 
2.1. The equations 

To model the instabilities of a magnetic field in the convective overshoot zone we 
considered an initial state consisting of a region of uniform horizontal magnetic field 
embedded in a field-free, convectively stable atmosphere. This of course is not a true 
equilibrium since, for any finite value of the magnetic diffusivity 7,  the magnetic 
diffusion equation (7V2B = 0) is not satisfied across the interfaces of the magnetic 
field. However, this is not a serious problem provided that the instabilities grow on 
a timescale that is much shorter than that on which the field diffuses appreciably - 
this may be checked a posteriori and, fortunately, does indeed turn out to  be true. 

Our computational domain is between z = 0 (top) and z = d (bottom). Initially the 
atmosphere is piecewise polytropic with a temperature distribution of the form 
T = To+ Az  and a uniform horizontal magnetic field Boy” confined to the region 
z1 < x < x 2 .  The total (gas+magnetic) pressure is everywhere continuous, thereby 
giving rise to a density distribution as sketched in figure 1.  
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FIGURE 1. The density of the initial state as a function of depth. 
m = 1 . 6 , B = 2 , p = 1 , z , = 0 . 5 , z 2 = 0 . 8  

X 

FIGURE 2. Schematic representation of the computational domain. 
The shaded region depicts the undisturbed magnetic layer. 

For reasons explained in the introduction we shall concentrate only on 
interchange modes in this paper. All variables are independent of y and, in the 
absence of rotation, the fluid flow is in the (x,z)-plane only, perpendicular to the 
magnetic field BY. Our computational domain may then be thought of as a 
meridional slice near the equator with a toroidal field and with axisymmetric flows 
(see figure 2). To simplify the problem, the thermal conductivity K ,  the shear 
viscosity ,u and the magnetic diffusivity 7 are assumed to be constants ; furthermore 
the plasma obeys the perfect-gas law with constant specific heats. By choosing the 
layer depth d and the sound crossing time d/(RT,); as the units of length and time 
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respectively ( R  being the gas constant) the evolution equations can be expressed in 
dimensionless form as follows : 

p = pT,  (2.1) 

atp+v.p = 0, (2.2) 

(2.3) a, B + v . ( B U )  = ?ck V ~ B ,  

a,pu+V.puu = -V +B(m+l )pz^+Cka(V2u+iV(V.u) ) ,  (2.4) 

where & = a u +i3jui-&,V-u. 
The six dimensionless parameters 

i ?  
are defined by: 

a=- PCP 
K ’  

where p ,  and po are, respectively, the values of the pressure and density a t  z = 0, 
p0 is the magnetic permeability and C p  is the specific heat a t  constant pressure. It 
should be noted that this p is a somewhat strange parameter since it is a comparison 
of the gas presure a t  the top of the domain to  the magnetic pressure in the region of 
uniform field. We define a local value of /3 by /3/ = /3( 1 + x1 B ) m f l ,  the ratio of the gas 
pressure in the field-free gas immediately above the interface to the magnetic 
pressure. 

The formulation of the problem is completed by imposing boundary conditions a t  
the top and bottom and by requiring that all variables be periodic in the horizontal 
direction. I n  the physical context of the solar overshoot zone it is unclear exactly 
what the boundary conditions should be and, in any case, it is certainly unrealistic 
to apply complicated conditions to our highly idealized model. Thus, with the 
understanding that any instability ceases to be of interest once the influence of the 
boundaries is significant, we decided on the following simple boundary conditions for 
the horizontal surfaces : 

T = l  a t  z = O ,  T = l + B  at z = 1 ;  

w = a,u = a,B = 0 a t  z = 0 , l .  

I n  $4 we incorporate the effects of uniform rotation about an axis orthogonal to 
both B and g .  The momentum equation (2.4) is amended by the inclusion of the 
Coriolis term 252 x pu on the left-hand side ; the centrifugal acceleration is neglected 
since in the solar context it is several orders of magnitude smaller than that due to 
gravity. The remaining equations are unaltered in a rotating frame of reference. 
Rotation induces a flow in the y-direction, v say, although v is still independent of y. 
On the horizontal boundaries ( z  = 0 , l )  v is assumed to satisfy a, v = 0. 

2.2. Numerical techniques 
2.2.1. The linear equations 

Although our primary interest lies in the fully nonlinear development of the 
instabilities, linear theory has an important role to play in determining the variation 
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of the onset of instability with the parameters of the problem. In our numerical 
treatment of the nonlinear problem (see $3.2) the magnetic field initially has a 'top 
hat ' profile but this is smeared out immediately to give a profile that  is continuous 
but has very steep gradients a t  z = zl ,  z 2 .  Consequently, in order to obtain a 
reasonable agreement between our linear results and the early stages of the fully 
nonlinear evolution, we decided to adopt such a continuous field as the initial 
state for our linear stability analysis. We opted for a field variation of the form 
gtanh (30(2-2,)) - tanh (30(x-x,))} although, provided that the field is approxi- 
mately uniform between z1 and z2 and dies off rapidly elsewhere, its exact form 
is not important. 

Let the linear perturbation of the magnetic field be expressed as 6B = (0, b,  0) ,  the 
velocity as u = (a,O,w) and the perturbations of the pressure, density and 
temperature as 6 p ,  6p and 6T respectively. (It is worth noting that with an initial 
field as described above the perturbed field b is everywhere non-zero, in contrast to 
the perturbation of a discontinuous field.) The linearized versions of (2.1)-(2.5) are 
separable in x and t with u proportional to sinlx est and all other variables 
proportional to cos lx est. After eliminating 6 p  by means of the perfect-gas equation 
(2.1) the linear evolution equations (in the absence of rotation) take the form 

4 = L4, (2.6) 

where 4 = (FT, u, w, b, 6 ~ ) ~  is the solution vector and L is a 5 x 5 matrix whose 
elements are linear differential operators in x .  (When the effects of rotation are 
included 4 contains the extra element v (proportional to cos lx est) and L becomes a 
6 x 6 matrix.) To solve (2.6) the interval 0 < x < 1 is divided into n equally spaced 
points (typically 40) and the differential operators replaced by fourth-order finite 
differences. Equation (2.6) is then turned into an eigenvalue problem for a 5n x 5n 
matrix, L, say. All of the eigenvalues and eigenvectors of L, were determined by an 
NCAR library routine (EIGRGl) .  Having found the eigenvalues and eigenvectors of 
interest these were then calculated much more accurately by the method of inverse 
iteration (see, for example, Stoer & Bulirsch 1980), using considerably more mesh 
points (typically 100). 

2.2.2. The nonlinear equations 

The study of the fully nonlinear regime was achieved by integrating the equations 
in time. At each iteration the updating of the five (with no rotation) field variables 
requires the evaluation of both temporal and spatial derivatives. The timestepping 
scheme is best described in terms of the following simple advection4iffusion 
equation 

(2.7) 

where F ( X )  and D ( X )  represent the hyperbolic and parabolic terms respectively. 
Different techniques were used for these two terms. 

An explicit two-level scheme was employed to  treat the advective term; a 
predictor step which calculates an approximate value of X at  the new time is followed 
by a corrector step which improves the accuracy of the estimate. This technique, 
which is referred to as a partially corrected Adams-Bashforth scheme (see Gazdag 
1976), applied to (2.7) yields 

atx = - ~ . v x + ~ v ~ x  = F(x )+D(x ) ,  

(2.8) 
X"+l = X" +9t[3F(r?") -F(Z"-l)],  
~ " + 1  = x . + + ~ t [ ~ " ( P + l )  +E"(Z~)I, 

(predictor step)\ 
(corrector step) J 
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where X denotes the uncorrected value of X and the superscripts indicate the time 
level. The partially corrected scheme, unlike its uncorrected relative which has a 
weak instability with amplification factor 1 + 0 ( 8 t 2 ) ,  is stable provided the CFL 
criterion is satisfied. A fully corrected scheme also exists which is slightly more 
accurate than (2.8), although all two-level Adams-Bashforth schemes are formally of 
second-order accuracy. However, the fully corrected scheme requires the evaluation 
of both F ( X )  and F ( X )  a t  every timestep whereas in (2.8) only F ( X )  is needed 
(Gazdag 1976). 

The diffusive terms were treated implicitly or explicitly depending on timestep 
considerations. In general, explicit schemes are easily implemented but may require 
excessively small timesteps for numerical stability. Implicit schemes, on the other 
hand, have no timestep requirement for stability (unconditionally stable) but are 
more cumbersome to implement since typically they involve the inversion of a 
differential operator. Therefore we found it useful to include both schemes in our 
program and to let the program itself select the most advantageous a t  the beginning 
of each run. If an explicit scheme was chosen it was implemented as for the advective 
terms above. Alternatively an implicit Crank-Nicolson scheme (see, for example, 
Richtmyer & Morton 1967) was employed which, for the diffusive term in (2.7), takes 
the form 

x n + 1  = X n  +@t[D(Xn+l) + D ( X n ) ] .  

It can be seen from the last equation that, in this case, the inversion of a parabolic 
operator is required. 

In  order to carry out the programme outlined above F and D must be calculated 
from X and u a t  every timestep. For the full system of equations (2.1)-(2.5) this 
requires the evaluation of products of field variables together with their first- and 
second-order spatial derivatives. Because of the periodicity in the horizontal 
direction i t  is natural to represent the field variables by Fourier expansions in x. 
Horizontal derivatives are then calculated in phase space where they reduce to  
simple multiplications by powers of the wavenumbers. Derivatives in the vertical 
direction were represented by fourth-order finite differences thereby allowing for an 
easy treatment of the boundary conditions a t  z = 0, l .  Nonlinear terms which require 
products of field variables are best calculated in configuration space thus avoiding 
the heavy numerical burden of evaluating convolution sums. Of course, since the 
variables are transformed between phase space and configuration space several times 
per iteration, this technique, normally referred to as a pseudospectral method 
(Gottlieb & Orszag 1977), requires a very efficient fast Fourier transform. 

3. Instabilities of the static initial state 
3.1. The linear regime 

As expected from the physical characteristics of the problem, for small values of 7 the 
onset of instability is via an exchange of stabilities. We find that there is always one 
dominant unstable mode which grows appreciably before any of the harmonics lose 
stability -this is fortunate since it makes the task of selecting the desired mode out 
of the 5n possible eigenfunctions a relatively simple one. As required for a well-posed 
problem, provided that 7 is reasonably small ( 5  O . l ) ,  the instabilities are found to 
grow exponentially on a much shorter timescale than that on which the field 
diffuses. 

Since the instability is driven by a discontinuity in the density a t  the upper 
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FIGUEE 3. Linear eigenfunctions for the mode of maximum growth rate; in (a )  the atmosphere is 
strongly stratified (0 = 2,b, = 2 ) ;  in ( b )  the stratification is weaker (0 = 0.3, /It = 10). In (a)  T = 0.1, 
in (0) 7 = 0.05. For both cases y = 5, m = 1.6, u = 0.1, C, = 0.05, z1 = 0.5, z2 = 0.8. The horizontal 
wavenumbers for (a )  and ( b )  are 11 and 4 respectively. 
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FIGURE 4. Contour plot of the growth rate  as a function of /3( and horizontal wavenumber 1. 
y = % , m =  1.6, B = 0 . 1 , a = O . l , ~ = C , = 0 . 0 5 ,  z ,=0.5,z2=0.8.  

interface of the magnetic field i t  is not surprising that the eigenfunctions are peaked 
in this region (see figure 3).  From the continuity equation (and confirmed by figure 
3), associated with the peak in the vertical velocity will be a rapid change in the 
horizontal velocity u. As we shall see in 53.2, this horizontal shear flow centred on the 
upper boundary of the magnetic field has a strong influence on the subsequent 
nonlinear development of the instability. A wide-ranging exploration of parameter 
space (though keeping r small) reveals no drastic change in the general form of the 
eigenfunctions. However, as is to be expected, in the magneto-Boussinesq limit of a 
weak field (/3 $ 1 )  and a small temperature gradient (6' < I ) ,  when the jump in the 
density is small and the atmosphere is only weakly stratified, the eigenfunctions 
become less sharply peaked about the magnetic-field boundary and instead vary 
more gently over the entire vertical domain. This is illustrated by comparison of 
figures 3 (a)  a,nd 3 (b ) .  

As shown by the contour plot of figure 4, decreasing /3 (increasing the magnetic- 
field strength) both increases the growth rate and also moves the mode of maximum 
growth rate towards larger I (narrower cells). In the absence of all diffusion the 
growth rate is maximized for infinitesimally thin cells ( I  -+ C O )  ; however, dissipation 
acts most effectively on such cells and therefore the mode of maximum growth rate 
becomes of finite size. For small values of /3 the instability is sufficiently strong that 
diffusive effects are relatively weak and therefore the fastest-growing cells are quite 
narrow ; at  larger /3 the instability is less vigorous, the effects of diffusion are more 
important and thus the mode of maximum growth rate becomes wider. It should also 
be noted that in either of the limits /3+0 (strong field) or C,+O (vanishing 
dissipation) the curve of maximum growth rate as a function of 1 becomes flatter. 
This implies that instability can occur for a broad band of wavenumbers, a feature 
that has important consequences in the nonlinear regime. Analogous results are 
found in the standard Rayleigh-Taylor instability of two superposed viscous fluids 
(Chandrasekhar 1961, $94). 

A more surprising feature of this linear instability is that the mode of maximum 
growth rate has only a weak dependence on h, the depth of the magnetic region. This 
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FIGURE 5. Mode of maximum growth rate as a function of the depth of the magnetic layer, h. 
y = i, m = 1.6, 8 = 0.5, pt = 10, 7 = G,  = 0.05, z1 = 0.5. The Prandtl number cr is as shown. 

is illustrated by figure 5 which plots the mode of maximum growth rate versus h for 
three different values of the Prandtl number. The mode of maximum growth rate 
appears to be determined primarily by striking a balance between the destabilizing 
influence of the density contrast at the upper interface of the magnetic field and the 
stabilizing dissipative effects. Only when the magnetic layer is very thin is the full 
extent of the layer felt-in such cases the instability is weak and the mode of 
maximum growth rate moves to wider cells to minimize the viscous forces. 

It is of interest to compare our linear results with those obtained by Spruit & van 
Ballegooijen (1982) who studied the superficially similar problem of the stability of 
an isolated horizontal flux tube. They found that for disturbances that do not bend 
the tube instability can occur only if the ext,ernal (non-magnetic) medium is 
superadiabatically stratified and that, in such cases, increasing the strength of the 
magnetic field within the tube is stabilizing. By contrast, in our model instability can 
occur for subadiabatic (and superadiabatic) atmospheres and the effect of increasing 
the magnetic-field strength is to enhance the instability, as illustrated in figure 4. 
These fundamental differences in behaviour reflect important differences in the 
initial states of the two models. In  order for an isolated flux tube to be in static 
equilibrium with its surroundings (i.c. with the same density and total pressure) i t  
must necessarily be cooler than the adjacent non-magnetic gas and consequently, in 
order to maintain equilibrium, increasing the strength of the magnetic field just has 
the indirect effect of making the tube cooler. When the tube is perturbed from 
equilibrium its total pressure variation is accounted for by changes in both the gas 
pressure and magnetic pressure. As the field strength is increased the latter becomes 
dominant and, as may easily be verified by a parcel argument, the density variation 
of the tube becomes small - since the external atmosphere is unaffected by changes 
in the field strength of the tube this is therefore stabilizing. The situation for a 
magnetic layer, on the other hand, is markedly different since the initial equilibrium 
state is completely independent of the horizontal direction and thus no cooling of the 
magnetic region is required. Any increase in the field strength simply renders the gas 
more top-heavy and hence more susceptible to instability. 
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3.2. The nonlinear regime 

Small disturbances of the static top-hat initial state described in $ 2  are used as initial 
conditions for the fully nonlinear calculations, the subscquent nonlinear evolution 
being determined by (2.1)-(2.5). We have looked at several different cases, 
concentrating on variations in the magnetic field intensity (altering p) and in the 
stratification of the initial atmosphere (altering 0). In our computations v, 7 and 
C, were always small (4 1) and the atmosphere always subadiabatically stratified 
(m > l / (y-  1)). Although, as predicted by linear theory, variations in p and B lead 
to differences in both the growth rate and the preferred horizontal scale of the 
instability, the general form of the instability is qualitatively unchanged. In this 
section we present the results from two of our calculations. If the initial state is 
perturbed in a quite random manner then the resulting nonlinear evolution is fairly 
complicated. Such an example is dealt with in the latter part of this section, but first 
we shall consider a simpler case which serves to illustrate many essential features of 
the instability. 

Although the simplest case we could study is that of a single-humped disturbance 
in the horizontal direction, the symmetry of this perturbation means that interesting 
interactions between modes of different amplitude do not occur. In  order to include 
the competition between different modes we have therefore considered the simplest 
asymmetrical disturbance, the initial perturbation having two humps of slightly 
differing amplitudes. The nonlinear evolution of the instability is portrayed in figure 
6 (plate l ) ,  which shows four important properties of the flow a t  selected timesteps. 
The upper left picture allows the magnetic field (pointing out of the paper); the 
lower left the vorticity (positive vorticity corresponding to anticlockwise motions) ; 
the lower right shows 6p, the density fluctuations about the horizontal mean; the 
upper right the buoyancy work, the product of 7x1 and 6p (positive buoyancy work 
corresponding to light gas moving up or heavy gas moving down, negative buoyancy 
work to light gas moving down or heavy gas moving up). The parameter values 
for this calculation are v = 0.01, 7 = 0.01, y = 5, m = 1.6, B = 2.0, C, = 0.05, 
/3 = 1.0 (pt = 7.77); z1 = 0.6, z2 = 0.8; N , ,  the number of Fourier modes in the 
horizontal direction, is 128 ; N , ,  the number of grid points in the vertical is also 128 ; 
the aspect ratio of the computational domain is 1. 

As illustrated in figure 7, after an initial decline resulting from the starting 
perturbation, the kinetic energy grows rapidly owing t o  the release of the 
gravitational potential energy stored by virtue of the magnetic field. The magnetic 
field rises and expands, causing a shearing motion along the interface between the 
magnetic field and the field-free gas, as predicted by the linear eigenfunction (figure 
3). The question of whether this shear can excite secondary Kelvin-Helmholtz 
instabilities is an important one with a tremendous bearing on the subsequent 
motion. If the density contrast between the light and heavy gases is small then 
Kelvin-Helmholtz instabilities are easily excited (see, for example, Chandrasekhar 
1961, 3 101), regions of concentrated vorticity are formed and the unstable interface 
is mushroom-shaped. This is the case illustrated in figure 6 where the ratio of the 
density in the magnetic gas to  that in the field-free gas above is 1 -0 .5K1 ( =  0.94). 
If, on the other hand, there is a substantial discrepancy between the densities of the 
heavy and light gases then Kelvin-Helmholtz instabilities are suppressed and the 
development of the unstable interface is controlled principally by inertial effects. 
The heavy falling gas meets little resistance and forms long narrow spikes; in 
contrast, the rising, less dense gas finds it difficult to accelerate into the denser gas 
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FIGURE 6. Four phases of the evolution of the two-mushrooms instability. y = 513, m = 1.6, 0 = 2, 
fi = 1, o = T = 0.01, C, = 0.05, z I  = 0.6, z2  = 0.8. 

CATTANEO & HUGHES (Fucing p. 334) 
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FIGURE 15. Four phases of the evolution of the single-mushroom instability incorporating rotation. 
y = 5/3, rn = 1.6, 0 = 0.1, 6 = 2, p = 1, u = T = 0.01, C, = 0.05, z, = 0.6, zz  = 0.8. 
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FIGURE 7. Averaged kinetic energy density as a function of time for the two-mushrooms case. 

above and assumes the form of rounded bubbles (see, for instance, Daly 1967). In 
none of our calculations was the density contrast ever large enough for the resulting 
flow to enter the ‘bubbles and spikes’ regime. 

It can be seen clearly from figure 6(a)  that, as required for a sensible problem, the 
magnetic field has been distorted considerably more by the action of the instability 
than by diffusive processes. Whereas the instability is essentially responsible for the 
formation of the mushrooms, diffusion merely spreads out the magnetic field slightly 
a t  the interface with the field-free gas. 

By the time t z 6 it can be seen from figure 7 that the kinetic energy has ceased 
to grow, and it is a t  this stage that there is a change in the character of the problem. 
Whereas initially the dynamics is controlled by the rising of the magnetic gas and the 
creation of regions of strong vorticity, in the latter stages, when most of the available 
potential energy has been released, it is the interaction between these vortices that 
becomes the most important feature of the flow. In  general, the problem of several 
interacting vortices is fearsomely complicated ; however, for the instabilities we are 
considering, the dominant interactions are pairwise between vortices on neighbour- 
ing mushrooms, which simplifies matters considerably. It is well known (see, for 
example, Lamb 1932, Q 155) that two vortices moving under their mutual interaction 
remain the same distance apart and move about their common centre of vorticity, 
a special case of this being that two vortices of equal strength but opposite sign move 
in a straight line perpendicular to the line joining them. The neighbouring vortices 
on the mushrooms of figure 6 are of opposite sign and of comparable (though not 
exactly equal) magnitude and so behave approximately in this manner. (It may also 
be noted that, owing to the assumption of periodic boundary conditions, there is a 
similar interaction between the outermost vortices of both mushrooms.) The feature 
of most interest is that the vortices are spinning so as to move downwards and, as 
a consequence, patches of high magnetic field can be trapped towards the bottom of 
the layer, even though such regions are lighter than their surroundings and would, 
in the absence of any other flow, rise. This point is clearly illustrated in figure 
6 (b ,  c )  which shows the correspondence between regions of high magnetic field at the 
tips of the mushrooms and regions of negative buoyancy work. These pairwise 
vortex-vortex interactions persist, thereby trapping small pockets of magnetic field 
for long periods of time; even when t 2 9 (figure 6 d )  and most of the field of the 
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FIGURE 9. The intensity of the magnetic-field perturbation at  the upper interface ( z  = 0.6) as a 
function of wavenumber a t  two different times; t = 2.065 x lo-' (dashed line), t = 2.29 (solid 
line). 

upper mushroom has been dispersed there remain two small areas where the field 
strength is still greater than half of its initial value. Close inspection of these regions 
reveals that most of the field has come from the tips of the lower mushroom with only 
a small fraction from the wings of its taller neighbour - the reason why in figure 6 ( d )  
they both appear on the right-hand side of the computational domain is that  the 
smaller mushroom has expanded horizontally and one tip, having moved out of the 
left-hand side, has promptly reappeared on the right to satisfy the periodic boundary 
conditions. 

Having identified the key physical mechanisms by the relatively simple example 
above we can now see them in action in a more realistic calculation started from 
random initial conditions. The evolution of the magnetic field is portrayed in figure 
8 (plate 2), the parameter values being as for the two-mushrooms calculation just 
described except that CT = 0.1 and C, = 0.01 ; for this run N ,  = 256, N ,  = 120 and the 
aspect ratio is 2. The instability was triggered by a small perturbation in the 
temperature field consisting of the random superposition of waves with wavenumbers 
between 16 and 32. Unlike in the previous calculation, the amplitude of the initial 
disturbance was chosen to be sufficiently small (0.05) to  allow the preferred 
horizontal scale to emerge dynamically. 

The initial phase is characterized by the exponential growth of the kinetic energy 
and by the formation of small undulations on the upper interface. The wavelength of 
these undulations agrees well with the predictions of linear theory ; for example, in 
this particular case, the mode of maximum growth rate has horizontal wavenumber 
1 z 33 which corresponds to 10 peaks in our domain. Since it is these undulations that 
give rise to the mushrooms which persist throughout most of the evolution, linear 
theory provides a reliable indication of the preferred horizontal scales even in the 
nonlinear regime. This is exemplified by figure 9 which illustrates the intensity of the 
magnetic-field perturbation as a function of wavenumber a t  two different times. The 
earlier (dashed) curve represents the high-frequency response to  the initial 
perturbation ; the later (solid) curve reflects the evolution to the smaller preferred 



Nonlinear breakup of a mugnetic layer 337 

50 r 

20 :I 10 

Kinetic energy x lo4 

1 \Enstrophy \ 

0 2 4 6 8 10 12 14 16 

Time 

FIGURE 10. Averaged kinetic energy density, enstrophy and magnetic energy flux as a 
function of time. 

3 
a 
x 
F 
8 

-0.021 I I I I I 
0 0.2 0.4 0.6 0.8 1.0 

a 3 0.0°2r 

3 a 
x 
2 
8 

Depth Depth 

-0.0041 I I I I I 

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 
Depth Depth 

FIGURE 11. Magnetic energy flux as a function of depth at four different times. 
(a) t = 4.0027; (b) 6.0759; (c) 7.0327; ( d )  10.063. 

wavenumbers. The foregoing considerations should be qualified by recalling from 
53.1 that  as /3C,+O the growth rate depends only weakly on wavenumber and 
therefore in this limit the selection of a preferred horizontal scale will be influenced 
more by the initial conditions. 

As the amplitude of the perturbation grows the familiar mushrooms begin to form 
but, because of the randomness in the initial conditions, the outgrowths are rather 
more irregular. Associated with the range in mushroom size is a corresponding range 
in the intensity of the vortices formed at  the tips of the mushrooms. One consequence 
of this is that since, typically, any mushroom's two neighbours will be of different 
sizes the vortex-vortex interactions quickly destroy the symmetry of the 
mushrooms. This can be seen clearly in figure 8 ( b ,  c) which shows how the field 
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FIGURE 12. Horizontally averaged magnetic energy density as a function of depth at t = 8.9464. 

rapidly becomes distorted. The relation between the formation of mushrooms and 
regions of intense vorticity and their dynamical influence is illustrated by figure 10 
which plots the evolution of the cnstrophy, kinetic energy and magnetic energy flux. 
Until t z 4 all three quantities increase ; the subsequent rapid decline of the magnetic 
energy flux is due not to the instability running out of steam, as evinced by the still 
rising kinetic energy, but to the overwhelming influence of vortex-vortex 
interactions. Indeed, as already mentioned, these interactions can be so strong as to 
cause the downward displacement of regions of intense magnetic field as shown both 
by the behaviour of the two large mushrooms in the centre-left of figure 8 ( b ,  c )  and 
by the appearance of positive magnetic energy flux in figure 11.  

The final stages of the instability are controlled primarily by diffusion, spreading 
the magnetic field throughout the entire domain, and by a slow rundown of the 
motions by viscous processes. For times long compared with the growth time of the 
instability but short in comparison with the Ohmic diffusion time (figure 8 d ) ,  
the magnctic field is heavily fragmented but, because of the effects of vorticity, the 
peak magnetic-energy density occurs in the neighbourhood of x 2 ,  the base of the 
initial magnetic layer (see figure 12). 

4. Incorporating the effects of uniform rotation 
Given the particular astrophysical motivation for the problem we have studied it 

is only natural to give some thought to the effects of rotation on the instability. In  
general, the incorporation of rotation into a magnetic system leads to several new 
wavelike modes which have fully three-dimensional motions (see, for example, 
Acheson & Hide 1973) and which therefore fall outside the range of our present 
study. In  this section we shall confine ourselves to considering the influence of 
rotation on the interchange modes of $3, although of course being fully aware that 
other, possibly more important, modes have been omitted. I n  order to make the 
effects of rotation more apparent we found that it was necessary to consider rather 
rapid rotation rates, somewhat faster than that of the sun. 

4.1.  The linear regime 

The interchange modes of $3 can be thought of as the axisymmetric exchange of rings 
of fluid. In  the absence of magnetic fields, a simple argument making use of the 
conservation of angular momentum when two rings of fluid are exchanged leads to 
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FIGURE 13. Contour plot of the growth rate as a function of D and horizontal wavenumber 1. 
y = % , m =  l . 6 , B = 2 , p t = 2 ,  ~ = 0 . 1 , 7 = C ~ = 0 . 0 5 ,  z , = O . 5 ,  z , = O . 8  

Rayleigh’s criterion that a system is unstable to axisymmetric disturbances if the 
angular momentum decreases outwards. In  particular therefore, uniform rotation 
will have a stabilizing influence on the direct modes of $3  - this is illustrated by the 
contour plot of figure 13. The angular-momentum constraint can be relaxed by the 
action of viscosity which allows displaced rings of fluid to mingle more readily with 
their surroundings. Consequently the most suitable modes for simply annulling the 
stabilizing effects of rotation are those with large values of 1 since these diffuse 
angular momentum most effectively - this may be verified by adopting a highly 
artificial viscosity which acts only on the azimuthal component of velocity and then 
only in the vertical direction. As the rotation rate is increased therefore, and the 
instability becomes weaker, two competing effects come into play. On the one hand 
the mode of maximum growth rate would like to move to larger values of 1 to diffuse 
angular momentum more effectively; on the other hand, to avoid the conventional 
stabilizing effects of dissipation, modes with smaller values of 1 are preferred (as in 
the absence of rotation). In  all the examples we have looked a t  (see figure 13, for 
example) the former effect was slightly dominant and the mode of maximum growth 
rate assumed a larger value of l as the rotation rate increased. It is, however, by no 
means apparent that this should be true in general. 

When considering the instabilities arising from vertical gradients of a diffuse 
horizontal magnetic field, Hughes (1985b) showed that if T 2 cr instability could 
occur via a Hopf bifurcation. In  our model, linear theory also predicts oscillatory 
modes, but serious problems arise when these are pursued into the nonlinear regime. 
The oscillatory instability is characterized by a small frequency and by again 
requiring that T cr. Thus the oscillatory nature of the instability is never fully 
realized for, if the growth rate is large, the layer is disrupted in a fraction of the 
period whereas, if the growth rate is small, the layer is changed appreciably by 
Ohmic diffusion in one growth rime. The nonlinear evolution of a layer that is 
predicted by linear theory to be overstable is portrayed in figure 14 where it can be 
seen that no oscillatory behaviour is present. 
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FIGURE 14. The evolution o f  the magnetic field for a rotating instability with random initial 
conditions. y = t ,  m = 2, SZ = 0.15, 6' = 1, /l = 4, (T = 0.005, T = 0.01, C, = 0.05, z1 = 0.6, z2 = 0.8. 
The aspect ratio for this calculation is 2. The times are (a )  t = 10.458, (b )  21.912, (c) 34.361. 
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4.2. The nonlinear regime 
Since there are many similarities between the rotating and non-rotating cases we 
shall here concentrate solely on the differences. These may be emphasized by 
studying the evolution of two rapidly rotating instabilities ; from random initial 
conditions in figure 14 and from a simple, single-humped disturbance in figure 15 
(plate 3). The parameter values for this latter calculation are the same as for the two- 
mushrooms case of $3.2 with a rotation rate of 52 = 0.1 and an aspect ratio of 2. 
Figure 15 has the same layout as figure 6 except that now we have chosen to illustrate 
the azimuthal velocity, a feature peculiar to the rotating instability. 

Owing to the powerful rotational constraint, which inhibits vertical motions, the 
overall evolution of the instability is more sluggish. This may be seen by a cursory 
inspection of figure 14 and by comparison of figures 6 and 15 which shows the 
instability of the static state to be progressing much faster than its rotating 
counterpart. Furthermore, the secondary Kelvin-Helmholtz instability, which is 
chiefly responsible for the formation of localized vortices in the non-rotating case, is 
also severely impeded by rotation (Chandrasekhar 1961, $ 105) and, as a result, the 
mushrooms of $3  become the amorphous blobs of figures 14 and 15. Consequently, 
since the nonlinear disruption of the layer is caused primarily by vortex-vortex 
interactions, the presence of weaker vortices allows the layer to remain intact for 
long times. 

Incorporating rotation induces an azimuthal velocity which, in figure 15, is 
comparable in magnitude with the meridional flows. The influence of the Coriolis 
force can be seen clearly, with the fluid in the rising magnetic blob acquiring 
retrograde motion (v negative) and the descending field-free fluid between blobs 
moving in the opposite direction. 

5. Discussion 
The most important result to emerge from our calculations is that the development 

of the instability proceeds in two fairly distinct stages. In  the first, motions are 
driven by the release of gravitational potential energy - the interface separating the 
magnetic field and the field-free gas becomes mushroom-shaped and there is a 
buildup of vorticity in the tips of the mushrooms. Such behaviour is not uncommon 
in situations involving the relative accleration of fluids (or gases) of comparable 
density. Two other examples illustrating this phenomenon are the injection of one 
fluid into another (see Batchelor 1967, plate 20), and the fragmentation of an isolated 
flux tube rising through a non-magnetic gas (Schiissler 1979). In  the second stage 
there is a change in the dominant driving feature of the instability with the motion 
being controlled primarily by the interactions between vortices of opposite sign on 
neighbouring mushrooms. Other numerical simulations of Rayleigh-Taylor insta- 
bilities have not been carried beyond the preliminary stage and so this later 
development has not previously been observed. The interactions between vortices of 
different intensities lead to a rapid disruption of the layer in a time short compared 
with the magnetic diffusion time and, in the final stages of our calculations (see 
figures 6 d ,  S d ,  15d), to  small pockets of strong field remaining trapped towards the 
bottom of the computational domain. Obviously, since there is no external supply of 
energy to the system, all motions will eventually cease and the magnetic field will 
simply become uniform under the action of magnetic diffusion. It is interesting to 
note that, qualitatively a t  least, the break-up of a magnetic layer as decribed in 93 
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is somewhat similar to the destruction of a two-dimensional turbulent wake. Couder 
& Basdevant (1986) have sudied the wakes generated in thin soap films and, like us, 
find that a significant feature of the motion is the interactions between vortices of 
opposite sign (compare our figure 8 with their figure 7). 

As explained in the introduction, the work of this paper was motivated by 
considerations of the sun’s magnetic field and it is therefore important to discuss our 
results in that context. We cannot make any definite quantitative predictions since 
the dimensionless parameters of 92 take rather extreme values in the overshoot zone 
(for example, is very large, CT and 7 very small) and it is just not possible to perform 
our numerical calculations with these values. However, we do feel that the 
qualitative features of the instability we have described will be reproduced in the sun 
since, although we have overestimated the density contrast between the magnetic 
and field-free regions, thereby exaggerating the instability, we also have considerably 
more stabilizing dissipation. Thus it certainly appears that  any strong toroidal field 
generated beneath a field-free region will be drastically distorted by magnetic 
Rayleigh-Taylor instabilities and that, as pointed out in $3.2, since the density 
contrast is small, a key role is played by the vorticity. Whether isolated flux tubes 
are the natural upshot of these instabilities is still unclear. The caps of the magnetic 
mushrooms could be thought of as the initial formation of flux tubes, but in our 
calculations the stems of the mushrooms were never pinched off and the strong 
vortex interactions prevented the rise of these features. Of course, in the sun, the 
region overlying the magnetic field is neither initially static nor stably stratified, as 
in our model, but is instead a region of turbulent convection, a fact that could 
significantly affect the later evolution of the instability. Should a mushroom 
protrude into this region it is conceivable that the turbulent motions could snap off 
the stem to form an isolated flux tube endowed with a certain distribution of 
vorticity. This conjecture could be tested by extending our model to incorporate the 
effects of an overlying convectively unstable region. Furthermore, if flux tubes were 
indeed generated with a strong vorticity i t  would be instructive to include this 
feature in models of isolated flux tubes. The interaction between a tube with 
vorticity and a mean flow presumably would have an influence on the path taken by 
the tube as i t  ascended through the convection zone. 

Finally we shall mention what is probably the most important extension of the 
work described in this paper - the study of the instability to  three-dimensional 
disturbances. As explained in the introduction, from linear theory we expect the 
fastest-growing mode to have a long wavelength in the direction of the imposed field. 
Of particular interest though would be the subsequent nonlinear behaviour of the 
vorticity mushrooms when they have more room to manoeuvre. One can imagine 
new instabilities due to the shear in the y-direction as well as wrapping instabilities 
of the type studied by Takaki & Hussain (1984). For the rapidly rotating system of 
$4, we envisage that the extra degree of freedom will change the character of the 
instability quite dramatically. The initial phase of the instability will presumably be 
wave-like, but after that  we would not like to mak- a guess as to what might 
happen. 
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